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Abstract

Active constrained layer (ACL) treatments consist of a layer of viscoelastic material bonded to the host
structure and constrained by an actuator. These treatments control vibrations by means of several
mechanisms: the actuator increases the dissipation of energy by increasing the shearing in the viscoelastic
layer, and simultaneously it controls the vibrations by applying forces to the host structure through the
viscoelastic layer. To optimise ACL treatments, it is necessary to understand their physics. While several
models in the literature successfully predict the response of structures treated with ACL, the complexity of
these models is not well suited for investigating the mechanisms underlying the behaviour of ACL
treatments.

This paper describes a simple model of beams treated with ACL, which allows analytical investigations of
the damping and control mechanisms of ACL treatment. The model is based on a modal approach in which
each mode of the structure is represented by a mass–spring system. The two layers of the ACL patch are
represented by two springs in series, the control voltage in effect driving one of these springs. A numerical
validation indicates that the model accuracy is good for ACL patches whose length is smaller than the
wavelength of the beam and located at appropriate positions on the host structure.

In order to demonstrate the usefulness of the lumped parameter model to get insight into the behaviour
of ACL treatments, the various ACL damping mechanisms are briefly discussed. Results indicate that
proportional feedback control is associated with an increase of shearing in the viscoelastic layer, while the
action of active forces dominates when derivative feedback is used.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

An interesting technique to reduce vibrational energy is to use active control in conjunction
with material damping, because active control is easier to implement at low frequencies while
material damping is generally more efficient at high frequencies. Moreover, material damping
adds stability to the system, potentially improving the efficiency of the active control. An example
of active–passive treatment for structural vibrations is the active constrained layer (ACL). This
treatment consists of a viscoelastic layer constrained by an actuator, generally made of
piezoelectric material, and dissipates energy simultaneously by the shearing of the constrained
viscoelastic layer and by the action of the actuator. In the typical configuration shown in Fig. 1,
the viscoelastic layer is sandwiched between the structure and the piezoelectric actuator, across
which a control voltage is applied. If the actuator is properly driven by the control voltage, it
increases the shearing of the viscoelastic layer and the dissipation of energy. The actuator also
applies forces to the host structure through the viscoelastic layer, further controlling the
vibrations.

To optimise ACL treatments, it is essential to understand and model the physics underlying
their behaviour. In the literature, a number of models of structures treated with ACL have been
derived and validated by experiments. Several of these models are based on finite element analysis,
for example, those proposed by Baz [1] or by Liao and Wang [2] for beams, and by Park and Baz
[3] for plates. Rongong’s model [4] using the Rayleigh–Ritz method was also validated
experimentally. Analytical models have also been proposed. For example, Baz [5–7] and Shen [8,9]
have used mechanics of material or energy approaches (such as Hamilton’s principle) to obtain a
sixth-order differential equation describing beams treated with ACL. In Baz’ model, this equation
has been solved using a wave approach [5,6]. Following the work of Baz, a similar model has been
experimentally validated by Illaire and Kropp [10].

Although these models are useful as detailed prediction tools, they are not well suited to
understanding the behaviour of ACL treatment, since the mathematical expressions involved are
very complex. These models behave as ‘‘black boxes’’: they accurately predict the response of the
structure, but they do not allow for the investigation of the underlying mechanisms in a direct,
analytical way.

This paper describes a simple model of beams treated with ACL, which provides insight into the
physics of ACL treatments. In this model, referred to here as the ‘lumped parameter model’, each
mode of the base beam is modelled as a single degree of freedom (sdof) system, and the two layers
of the ACL patch are modelled by two springs in series, as shown in Fig. 2. The spring modelling
the actuator is driven by a modal force Vn resulting from the voltage V applied to this actuator.
Undeformed Deformed
Host structure

Actuator Viscoelastic
layer

Motion of
structure

Restoring actionEnergy dissipation
(enhanced shear)

Fig. 1. Principle of active constrained layer.
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Fig. 2. Principle of the lumped parameter model.
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The stiffness corresponding to the viscoelastic layer is complex, reflecting the dissipative nature of
viscoelastic materials, while the stiffness corresponding to the actuator is approximated to be real.

The main assumption of the model is that the surface strain of the beam beneath the ACL patch
is constant. Therefore, the model is valid for patches whose length is short compared to the
wavelength on the beam and which are positioned around the antinodes of the beam.

The lumped parameter model enables analytical investigations and the interpretation to be
made of issues such as the influence of the control law and of the viscoelastic layer characteristics
on the dissipation of energy, or on the transmission of the active force to the host structure.

The variables describing the beam and the ACL patch modelled in this work are given in
Section 2, and the assumptions made in the model are presented in Section 3. The equivalent
spring stiffness of each layer of the uncoupled ACL patch are calculated in Section 4. The lumped
parameter model is derived using a modal approach in Section 5, and is validated in Section 6 by
comparing numerical predictions with those of a more detailed wave model [10]. In Section 7, the
various effects of ACL treatments are explored.
2. Description of the structure

The structure modelled in this article is a beam treated with an ACL patch, as shown in Fig. 3.
The geometrical and material characteristics of the structure are described by the following
variables:
�
 L is the length of the beam, and La is the length of the ACL patch;

�
 x1 and x2 are the positions at the ends of the ACL patch, and xc is the position of the center of

the ACL patch;

�
 the width of the beam is b;

�
 tb; tv and tc are the thicknesses of the base beam, viscoelastic layer and cover layer, respectively;

�
 the mass per unit length of the base beam is r;

�
 Eb and Ec are the Young’s moduli of the base and cover layer;

�
 Ib is the moment of inertia of the base layer;
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Fig. 4. Variables describing the motion of the structure.
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Fig. 3. Geometry of the beam with an ACL patch.

H. Illaire et al. / Journal of Sound and Vibration 285 (2005) 281–302284
�
 G is the complex shear modulus of the viscoelastic layer; G ¼ G0ð1þ jZGÞ; where G0 is the
storage modulus and ZG the loss factor;
�
 d31 is the strain constant of the piezoelectric material of the cover layer.

The structure is subjected to a transverse external force f extðtÞ at some position xe; and to a
control voltage vðtÞ applied to the piezoelectric cover layer. It is assumed that the force and the
voltage are time harmonic at frequency o so that f extðtÞ ¼ F exte

jot and vðtÞ ¼ Ve jot: Thus, all
dynamic quantities vary as e jot and this explicit time dependance will be suppressed henceforth.
The control voltage results in a free strain �p in the cover layer, given by

�p ¼ V
d31

tc

: (1)

These excitations cause bending motion in the structure, this motion is described by several
variables (see Fig. 4):
�
 W is the transverse displacement of the layers;

�
 ub and uc are the longitudinal displacements of the base beam and of the cover layer,

respectively;

�
 ubv and ucv are the longitudinal displacements of the viscoelastic layer at the interface with the

base beam and with the cover layer, respectively;

�
 the shear strain in the viscoelastic layer is g ¼ ðucv � ubvÞ=tv;

�
 the extensional strain in the base and cover layer is eb ¼ dub=dx and ec ¼ duc=dx; respectively;

�
 the bending angle of the structure is b ¼ dW=dx:
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The stress and the strain in the base layer, the viscoelastic layer and the cover layer, respectively,
are related by the following equations:

t ¼ Gg; (2)

sc ¼ Ecðec � �pÞ; (3)

sb ¼ Ebeb: (4)

In addition, the extensions eb and ec of the viscoelastic layer at the interface with the beam and
with the cover layer, respectively, are

eb ¼ Laeb; (5a)

ec ¼ Laec; (5b)

and the extension ep induced in the cover layer by the control voltage is

ep ¼ La�p; (6)

where �p is the free strain as defined in Eq. (1).
3. Assumptions

The main assumption is that the strain of the surface of the beam is constant underneath the
ACL patch. The conditions under which this assumption is valid depend on the size of the patch
and its position on the beam with respect to the nth mode shape, and are considered in Section 3.1.

Other simplifying assumptions, valid for a thin ACL patch, are that the mass of the patch and
the bending stiffness of the cover layer are negligible. Also, it is assumed that the ACL patch
introduces negligible coupling between the modes of the uncontrolled beam.

Other assumptions in the model developed here are commonly made for models of structures
treated with ACL (see e.g. Refs. [1–9]). These include:
�
 the classical Euler–Bernouilli assumptions apply for the base layer;

�
 the deflection in the direction normal to the surface is the same for all layers, i.e. there is no

transverse compression in any of the layers;

�
 only shear motion takes place in the viscoelastic layer, and the shear angle is constant across the

depth of the viscoelastic layer;

�
 only bending motion occurs in the base layer;

�
 the cover layer only extends or contracts;

�
 the electrical potential in the electrodes of the actuator is uniform, and electro-mechanical

coupling effects are neglected.

3.1. Conditions for a constant surface strain of the beam

In the lumped parameter model, it is assumed for simplicity that the strain of the surface of the
beam is constant underneath the ACL patch. In the following, we examine the conditions under
which this condition is true.
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In order to simplify the analysis, consider the case of a cover layer whose longitudinal stiffness
is negligible compared to that of the base beam, i.e. tcEc5tbEb: In such a case, the base beam
experiences a bending motion with negligible net axial extension. Then, the strain ebv at the surface
of the beam can be approximated by

ebv ¼
tb

2

d2W

dx2
: (7)

Assuming vibrations in modes, around the nth natural frequency of the beam the transverse
displacement is equal to the mode shape FnðxÞ and therefore

ebvðxÞ ¼ Cn
d2Fn

dx2
ðxÞ; (8)

where Cn is the amplitude of the nth modal component of ebv: Expanding ebvðxÞ as a Taylor series
about the center of the ACL patch at x ¼ xc gives

ebvðxcÞ ¼ Cn
d2Fn

dx2
ðxcÞ þ ðx � xcÞ

d3Fn

dx3
ðxcÞ �

ðx � xcÞ
2

2!

d4Fn

dx4
ðxcÞ þ � � �

� �
: (9)

The strain is thus constant with position if all terms of order higher than one in the equation
above can be neglected. As an example, for a simply supported beam with an ACL patch of length
La; the strain beneath the ACL patch is constant if

La

2
knj cot knxcj51 (10)

and

1

2

La

2
kn

� �2

51: (11)

Therefore, the strain is constant if the length of the ACL patch La is small enough (compared to
the wavelength 2L=n) and if the patch is mounted at an appropriate position xc on the beam, such
that sin knxc is large enough. This latter condition is required for the patch to adequately couple
into the nth mode of the beam.

As an illustrated example, if the patch is centered on an antinode of the beam, then Eq. (10) is
always fulfilled and the maximum length of the patch is given by Eq. (11). It can easily be
calculated that in this case, the deviation from linearity at the ends of each zone is equal to 10% if
La=L ¼ 0:29=n: For each mode, the maximum length of an ACL patch centered on an antinode of
the beam is thus equal to about one-sixth of the wavelength of the beam.
4. Equivalent stiffness of an uncoupled ACL patch

In this section, we derive the equivalent stiffness of the springs modelling the viscoelastic layer
and the cover layer of the ACL patch when it is uncoupled, i.e. not bonded to the host structure.
First, the shear stress inside the viscoelastic layer is calculated when a known constant strain is
applied at the base of the ACL patch. Second, an equivalent stiffness is derived for each layer.
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This equivalent stiffness relates the applied shear force and the extensions of a layer, and will be
used in Section 5 to derive the stiffness of the ACL patch coupled to the host structure.

4.1. Equation of motion of the ACL patch

An ACL patch of length La is subjected to an extensional strain of constant amplitude at its
base, such that eb ¼ eb=La (see Fig. 5). Therefore, the longitudinal displacement ubv of the base of
the viscoelastic layer, apart from a constant term, is given by

ubvðyÞ ¼
eb

La

y; (12)

where y ¼ x � xc is the position with respect to the centre of the patch.
Equilibrium of forces in the longitudinal direction yields

dTc

dy
� bt ¼ 0; (13)

where Tc is the axial force in the cover layer. In this equation, it is assumed that the inertial forces
resulting from the axial displacement of the base and of the cover layer are negligible. Inserting
Eqs. (2), (3) and (12) into Eq. (13) yields

d2ucv

dy2
� gucv ¼ �g

eb

La

y; (14)

where

g ¼
G

tv

1

tcEc

: (15)

The parameter g is associated with the coupling between the base and the cover layer.
The particular solution of Eq. (14) is

ucv ¼ C1e
ffiffi
g

p
y þ C2e

�
ffiffi
g

p
y þ

eb

La

y (16)

and is the sum of two evanescent components and of a component arising from the excitation. The
constants C1 and C2 can be found from the boundary conditions at the ends of the cover layer.
The axial force and hence the axial stress in the constraining layer is zero at the ends of the cover
Deformed
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Cover layer

eb__
2

y

ubv

La__
2

0

eb__
2

(a) (b)

Viscoelastic layer

Fig. 5. ACL patch subjected to an extensional strain of constant amplitude: (a) deformation of the ACL patch and (b)

applied longitudinal displacement at the base of the patch.
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layer. Consequently,

sc �
La

2

� �
¼ sc

La

2

� �
¼ 0: (17)

Thus, we obtain

C1 ¼ �C2 ¼
�p � ðeb=LaÞffiffiffi

g
p

coshðzÞ
; (18)

where z is a non-dimensional parameter given by

z ¼
ffiffiffi
g

p La

2
: (19)

This yields

ucvð yÞ ¼
sinhð

ffiffiffi
g

p
yÞffiffiffi

g
p

coshðzÞ
�p �

eb

La

� �
þ

eb

La

y: (20)

The shear stress tð yÞ can be deduced from Eq. (2), and is given by

tð yÞ ¼
2Ectc

L2
a

z
coshðzÞ

sinhð
ffiffiffi
g

p
yÞðep � ebÞ: (21)

The term ep ¼ La�p is the extension that would be induced by the control voltage in the cover layer
if this layer was free, i.e. not bonded to the viscoelastic layer. The amplitude of tð yÞ depends thus
on the extensions ep and eb of the top and the base of the ACL patch.

The term sinhð
ffiffiffi
g

p
yÞ ¼ e

ffiffi
g

p
y � e�

ffiffi
g

p
y=2 represents end effects whose relative importance

increases with z: As shown in Fig. 6, the variation of the function tð yÞ is nearly linear for
small values of z and tends to dð y � La=2Þ þ dð y þ La=2Þ; where d is the Dirac function, for large
values of z: This last case corresponds to an ACL patch whose viscoelastic layer is very thin and
stiff compared to the cover layer (tv=G5Ectc), i.e. to an actuator directly bonded to the host
beam.

4.2. Equivalent stiffness of the viscoelastic layer

The shear stiffness kv of the viscoelastic layer alone, as shown in Fig. 7, is

kv ¼
F shear

ec � eb

; (22)

where F shear is the shear force applied to the right half of the upper surface of the viscoelastic
layer, i.e.

F shear ¼ b

Z La=2

0

tð yÞdy: (23)

To derive kv; it is necessary to calculate the shear stress function tð yÞ as a function of ec and ev:
Eq. (21) shows that tð yÞ has the form

tð yÞ ¼ A sinhð
ffiffiffi
g

p
yÞ: (24)
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Fig. 7. Modelling of the viscoelastic layer as a spring.

H. Illaire et al. / Journal of Sound and Vibration 285 (2005) 281–302 289
The amplitude A has to satisfy the boundary conditions

t
La

2

� �
¼

G

tv

ðucv2 � ubv2Þ; (25)

t �
La

2

� �
¼

G

tv

ðucv1 � ubv1Þ; (26)

which yields

A ¼ 2
Ectc

L2
a

z2

sinhðzÞ
ðec � ebÞ: (27)
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Substituting Eqs. (24) and (27) into Eq. (23) leads to

kv ¼ b
Ectc

La

coshðzÞ � 1

sinhðzÞ=z
: (28)

If the viscoelastic layer is very stiff and thin in comparison with the cover layer, then z becomes
very large. In this case, kv also becomes very large, meaning that the spring becomes very stiff. The
cover layer is in effect then bonded directly to the host beam. If, on the other hand, the viscoelastic
layer is soft and thick in comparison with the cover layer, z and kv tend to zero. In this case, the
cover layer is effectively uncoupled from the host structure.

4.3. Equivalent stiffness of the cover layer

The equivalent stiffness kc of the cover layer as shown in Fig. 8 is

kc ¼
F shear

ep � ec

: (29)

To derive kc; we need first to calculate t as a function of ec and ep: The shear stress t on the upper
surface of the viscoelastic layer and the extensional stress s in the cover layer are related by

tc

ds
dy

¼ t (30)

from equilibrium. Therefore, s is given by

sð yÞ ¼
A

tc

1ffiffiffi
g

p coshð
ffiffiffi
g

p
yÞ þ C; (31)

where C is a constant. Applying the boundary conditions (zero axial stress at the ends of the cover
layer) leads to

C ¼ �
A

tc

coshðzÞffiffiffi
g

p : (32)

In addition, s must satisfy the relation for the cover layer given in Eq. (3), and therefore

duc

dy
¼

s
Ec

þ �p: (33)
κ c

Laεp = La       V

ec = ucv2 - ucv1

Fshear

Deformed
ucv2

ucv1

Undeformed
Cover layer

Fshear

V

d31

tc

Fig. 8. Modelling of the cover layer as a spring.
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Integrating this equation yields

uc ¼
1ffiffiffi
g

p
A

Ectc

1ffiffiffi
g

p sinhð
ffiffiffi
y

p
Þ � y coshðzÞ

� �
þ �py þ D: (34)

Then, calculating ec ¼ ucðLa=2Þ � ucð�La=2Þ gives

A ¼
Ectcg

2 sinhðzÞ � 2z coshðzÞ
ðec � epÞ: (35)

Inserting this expression in Eqs. (30) and (31) gives t; and finally Eqs. (23) and (29) yield

kc ¼ b
Ectc

La

coshðzÞ � 1

coshðzÞ � sinhðzÞ=z
: (36)

If z tends to infinity, kc tends to bEctc=La: This value corresponds to the stiffness of a beam
subjected to a strain which is constant with position. When the strain in the cover layer is not
constant, kc is larger than this limiting value.

4.4. Total equivalent stiffness of the ACL patch

The force applied by the ACL patch to the beam obeys

F shear ¼ kaclðeb � epÞ; (37)

where kacl is the equivalent stiffness of the ACL patch and is equal to the stiffness of the
viscoelastic layer and the cover layer in series, i.e.

1

kacl
¼

1

kv

þ
1

kc

: (38)

Inserting the expressions for kv and kc given in Eqs. (28) and (36) yields

kacl ¼ b
Ectc

La

coshðzÞ � 1

coshðzÞ
: (39)

If kc is much smaller than kv; which happens when zb1; then kacl ¼ kc (see Fig. 9) and the cover
layer can be considered to be directly bonded to the beam. The approach presented here thus
enables to model ACL patches with arbitrarily thin and stiff viscoelastic layers. For low values of
z; kacl ¼ kv and the cover layer can be considered to be perfectly rigid. In this case, the shear stress
in the viscoelastic layer varies linearly with x. As will be seen in Section 7, the constrained layer is
optimum for some intermediate value of z:

The equivalent stiffness kacl is an approximate lumped parameter model of the ACL patch.
Because of the assumptions made, it cannot fully describe the shear stress tð yÞ in the viscoelastic
layer. This can be seen by rewriting the expression for tð yÞ given in Eq. (21) as

b
La

2
tð yÞ ¼ f ð yÞkaclðep � ebÞ; (40)

where f ð yÞ is a function describing the shape of tð yÞ and is given by

f ð yÞ ¼
z sinh

ffiffiffi
g

p
ð yÞ

coshðzÞ � 1
: (41)
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Therefore, both the equivalent stiffness kacl and the shape function f ð yÞ are necessary to
characterise the ACL patch. As a consequence, the loss factor of the ACL patch cannot be
obtained directly from kacl; since the loss factor depends on the variation of tð yÞ along the ACL
patch (see Section 7 for the derivation of the loss factor).
5. The beam with ACL patch

In this section, we present the derivation of the lumped parameter model of a beam
treated with an ACL patch. The classical modal decomposition method is applied to
the equation of motion of the treated beam, using the modes of the untreated beam.
In the resulting modal model, the ACL patch appears as a spring of stiffness Kacl

coupled to a mass–spring system representing the base beam. The spring Kacl is made
of two springs in series: one corresponds to the viscoelastic layer and has a complex
stiffness Kv; the other corresponds to the cover layer and has a stiffness Kc which is
approximately real.

5.1. Equation of motion of a beam treated with ACL

A beam is treated with an ACL patch on a portion of its length, as shown in Fig. 3.
Since the mass and the bending stiffness of the ACL patch are neglected, the only
effect of the patch is to apply a shear stress t to the base beam. The equation of motion of the
beam is

EbIb

d4W

dx4
� ro2W ¼ b

tb

2

dt
dx

þ F extdðx � xeÞ: (42)
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If the conditions for the strain to be constant underneath the ACL patch are fullfilled (Eqs. (10)
and (11)), then the shear stress on the beam becomes, from Eq. (40),

tðxÞ ¼
1

b

2

La

f ðxÞkaclðep � ebÞPðxÞ; (43)

where

PðxÞ ¼
1 8x 2 ½x1; x2�;

0 otherwise:

�
(44)

It is worth noting that the model can easily account for multiple ACL treatments by
simply summing the shear stresses from each patch. In Eq. (43), the extension eb can be
expressed as

eb ¼ ubv2 � ubv1 ¼ �
tb

2

dW

dx
ðx2Þ �

dW

dx
ðx1Þ

� �
: (45)

Inserting Eqs. (43) and (45) in Eq. (42) yields

EcIc
d4W

dx4
� ro2W �

t2b
2La

kacl
dW

dx
ðx2Þ �

dW

dx
ðx1Þ

� �
d

dx
ð f ðxÞPðxÞÞ

¼
tb

La

kaclep

d

dx
ð f ðxÞPðxÞÞ þ F extdðx � xeÞ: ð46Þ
5.2. Modal decomposition

Following the classical modal decomposition approach, we assume the transversal deflection
W ðx;oÞ is given by

W ðx;oÞ ¼
X

n

W nðoÞFnðxÞ; (47)

where W nðoÞ and FnðxÞ are the modal amplitude and the mode shape of the nth mode of the
untreated beam, respectively. Inserting Eq. (47) into (46) yields

X
n

Fnrðo2
n � o2ÞW n �

t2b
2La

kaclDCn

d

dx
ð f ðxÞPðxÞÞW n

� �

¼
tb

La

kaclep
d

dx
ð f ðxÞPðxÞÞ þ F extdðx � xeÞ: ð48Þ

In this equation,

o2
n ¼

EbIb

r
k4

n (49)

is the nth natural frequency of the untreated beam and DCn ¼ Cnðx2Þ �Cnðx1Þ where CnðxÞ ¼
dFnðxÞ=dx:
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We multiply Eq. (48) by FmðxÞ and integrate over the length of the beam. Because of the
orthogonality of the modes, we obtain

Mmðo2
m � o2ÞW m �

t2b
2La

kacl

X
n

Gm½DCnW n� ¼
tb

La

kaclepGm þ Fm; (50)

where

Mm ¼

Z L

0

rFmðxÞ
2 dx (51)

and

Fm ¼ F extFmðxeÞ (52)

are the modal mass and the modal force of the mth mode and where

Gm ¼

Z L

0

FmðxÞ
d

dx
ð f ðxÞPðxÞÞdx: (53)

Integrating twice this last equation by parts yields

Gm ¼ �½F ðxÞCnðxÞPðxÞ�L0 þ

Z x2

x1

F ðxÞ
dCnðxÞ

dx
dx; (54)

where F ðxÞ is the primitive of f ðxÞ: Since the strain is assumed to be constant beneath the ACL
patch, dCn=dx is also constant between x1 and x2 (see Eq. (8)) and therefore

Gm ¼ �b
La

2

dCmðxcÞ

dx

Ectc

kc

: (55)

The non-dimensional term Gm quantifies the coupling between the function f ð yÞ and the host
beam at position xc; and can therefore be referred to as a ‘‘position coupling factor’’. As expected,
Gm is maximum when xc is located on an antinode of the mth mode.

The terms Gm and DCn are not orthogonal, and mode-coupling effects appear in Eq. (50). This
is because the ACL patch applies forces which couple the uncontrolled modes of the beam. These
effects are now assumed to be negligible, i.e.

Gm

X
n

½DCnW n� � Gm DCm W m: (56)

This results in

W n Mnðo2
n � o2Þ �

t2b
2La

kaclDCnGn

� �
¼

tb

La

kaclGnep þ Fn: (57)

This equation can be rewritten as

W nMnðo2
n � o2Þ ¼ Kaclðep � anW nÞ þ Fn; (58)

where

Kacl ¼
tb

La

Gnkacl (59)
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and

an ¼ �
tb

2
La

dCnðxcÞ

dx
: (60)

Eq. (58) is the lumped parameter model of the beam treated with ACL, as shown in Fig. 10. The
left-hand side of Eq. (58) describes a mass-spring system and corresponds to the nth mode of the
host beam. The right-hand side of the equation describes a spring of modal stiffness Kacl and
corresponds to the ACL patch, Kacl being the stiffness of the ACL patch seen by the host
structure. This spring responds to the extension ep induced in the actuator by the control voltage,
and to the extension eb ¼ anW n of the host beam beneath the ACL patch. The non-dimensional
term an corresponds to the coupling between the bending motion and the extensional motion
beneath the ACL patch, and is represented in Fig. 10 by a lever between the mass–spring
system and the base of the ACL spring. The spring Kacl is made of two springs in series, Kc and
Kv; given by

Kc ¼
tb

La

Gnkc (61)

and

Kv ¼
tb

La

Gnkv; (62)

as discussed in the previous section. The real part of Kacl can be either positive or negative,
depending on the sign of Gn: This sign, in its turn, depends on dFnðxcÞ=dx; and thus on the
position of the ACL patch on the beam. However, the real part of anKacl is always positive,
because an and Kacl always have the same sign.
Kn

Mn

Kacl

Fn

Wn

anWn=eb

ep

Kc

K v

Fig. 10. sdof model of a beam treated with ACL.
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6. Validation of the model

In this section, the lumped parameter model is numerically validated by comparing predictions
with those obtained from a model based on the wave approach. This wave model has been
experimentally validated by Illaire and Kropp [10] on a treated beam similar to the one considered
in this section, showing very good agreement up to 2 kHz.

The structure we consider is a simply supported aluminium beam of dimensions 0:4 � 0:03�
0:003m3; onto which is bonded a massless ACL patch with the characteristics given in Table 1.
The patch has a length of 5 cm, and is glued to the beam between the positions x1 ¼ 0:25m and
x2 ¼ 0:30m: These characteristics result in jzj ¼ 1:5; which corresponds to an optimal efficiency of
the ACL patch, as will be discussed in Section 7. For the sake of simplicity, the shear modulus of
the viscoelastic layer is assumed to be independent of frequency, and the loss factor is assumed to
be zero in the cover layer and in the host beam.

The assumption of constant strain discussed in Section 3 requires the inequalities (10) and (11)
to hold. Values for the first six modes of the beam considered in this section are listed in Table 2.

The beam is excited either by a force applied at the position x ¼ 0:25; i.e. at the left end of the
ACL patch, or with a voltage applied to the actuator of the patch. In both cases, the response of
the structure is calculated by summing the responses of the first 12 modes.

As shown in Fig. 11, the frequency response function (FRF) calculated using the lumped
parameter model agrees well with that calculated with the wave model which involves few
assumptions. Agreement around antiresonances tends to appear worse, because in these frequency
ranges the single-mode approximation is worse. These results are not surprising since the
modification of the mass and stiffness of the base beam due to the ACL patch is negligible, and
the primary effect of the ACL patch is to add damping to the structure. Therefore, when Eqs. (10)
and (11) are not fulfilled for a certain mode, the overall aspect of the response remains correct and
only the amplitude of this mode is not accurately predicted.
Table 1

ACL patch properties

Thickness (m) Storage modulus ðNm�2Þ Loss factor Strain constant

Viscoelastic layer 0:127� 10�3 10:7� 106 1 —

Cover layer 0:5� 10�3 62:1� 109 0 120� 10�12

Table 2

Values taken by Eqs. (10) and (11) for the first six modes of the treated beam

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

La

2
knj cot knxcj 0.13 0.16 2.96 0.79 0.20 2.84

1
2

La

2
kn

	 
2 0.02 0.08 0.17 0.31 0.48 0.69
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In order to investigate more closely the accuracy of the lumped parameter model, it is worth to
compute the difference between the amplitudes of the resonance peaks predicted by the two
models. Indeed, since damping in the base and cover layers is neglected, the amplitudes of the
resonances depend only on the accuracy of the modelling of the damping in the viscoelastic layer.
As can be seen in Fig. 12, the differences are small, except for modes 3 and 6 which are not well
approximated using the constant strain assumption of Eqs. (10) and (11). In this case, the
amplitude predicted by the lumped parameter model is overestimated, indicating that the
damping is too low in this model.
7. The model: ACL damping discussion

In the previous sections, a simple lumped parameter model was developed and validated, which
describes the behaviour of the host structure as an sdof system for frequencies around the nth
resonance. In this section, the phenomena associated with ACL damping are discussed and
described in terms of the parameters of this model, for a simply supported beam and at a single
mode. The behaviour of the system is discussed for passive control (i.e. V ¼ 0) and active control,
where V is some function of W and its time derivative. For the sake of clarity, the subscript n is
omitted henceforth. Eq. (58) is then rewritten as

M €W þ KW ¼ F � KaclaW þ Kaclep: (63)
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7.1. Passive configuration

In the passive configuration, the extension ep induced in the actuator by the control voltage is
zero and hence the effect of the ACL patch is to add to the base beam a stiffness equal to aKacl:
With the assumptions made in this work, the real part of this stiffness is negligible in comparison
with the stiffness K of the base beam. Therefore, the ACL patch in effect adds a loss factor Zp

equal to

Zp ¼ a
ImfKaclg

RefKg
: (64)

As expected, the loss factor depends on the coupling a between bending and extension beneath
the ACL patch and on the imaginary part of the stiffness of the patch coupled to the beam.
Since Kacl ¼ tb=LaGnkacl (Eq. (59)), this imaginary part depends on the coupling factor Gn and
on the imaginary part of the stiffness of the uncoupled ACL patch, Imfkaclg: When the storage
modulus G0 and the loss factor ZG of the viscoelastic material are constant with frequency,
Imfkaclg is maximum for jzj close to 1.5, which corresponds to a ratio jkc=kvj also around 1.5. In
practice, G0 and ZG strongly vary with frequency, thus the optimum value of jzj might be different.
In any case, it is possible to optimise the design of the ACL patch to maximise the passive
damping.

Expressing Zp in terms of the physical parameters of the structure yields, for a simply supported
beam,

Zp ¼ 6
La

L

Ec

Eb

tc

tb

sin2 knxc
Imfkaclg

kc

: (65)

This equation highlights how Zp depends on the size and stiffness of the ACL patch compared to
those of the host beam, on the position of the patch and on right design of the ACL patch. This
equation also shows that, except for the term sin2 knxc which describes the coupling between the
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patch and the beam at position xc; Zp does not depend on the mode number and thus on the
frequency. This is because in the model it is assumed that the length of the patch is much smaller
than the length of the host structure.

7.2. Active configuration

In the case of an active treatment, W obeys

W ðK � Mo2Þ ¼ F þ Kaclðep � aW Þ: (66)

This equation shows that the material damping increases if ep; and thus the control voltage,
is in phase with �W : In this case the extension applied to the spring Kacl; and thus the
dissipation of energy in this spring, is augmented. If ep is equal to aW ; where a is a real
constant, then

W ¼
F

K þ Kaclða � aÞ � Mo2
: (67)

The total loss factor Z is therefore given by

Z ¼ ða � aÞ
ImfKaclg

K þ ða � aÞRefKaclg
: (68)

When the active stiffness due to the control voltage can be neglected compared to the stiffness K
of the base beam, then

Z ¼ Zp þ Za; (69)

where Za is the loss factor due to the augmented material damping, and is given by

Za ¼ �
a
a
Zp: (70)

In order to increase the total loss factor, a should be either positive or negative, depending
on the sign of a, i.e. on the location of the ACL patch on the beam. Since the sign of a
might be different for different modes, Za might be negative at certain frequencies if a is
constant over a broad frequency range. It is therefore necessary to sense the strain of the
surface of the beam beneath the ACL patch, in order to insure that the control voltage
increases the shearing motion of the viscoelastic layer. This might be done using, e.g. an
accelerometer, a piezofilm sensor or the self-sensing actuator technique developed by Dosh et
al. [11]. Note that in theory, Za is infinite for infinite values of a; but in practice the amplitude of
the control voltage is limited.

Another way of controlling the vibrations is to apply active forces to the host structure through
the viscoelastic layer, as can be seen by rewriting Eq. (66) as

W ðK � Mo2 þ KaclÞ ¼ F þ Fa; (71)

where Fa is the active force and is equal to

Fa ¼ Kaclep: (72)
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If ep is equal to �b _W (where b is a real constant), the actuator of the ACL patch behaves as an
active viscous damper. In this case, the response of the beam at resonance is equal to

W ¼
F

ImfKaclða þ jbÞg
¼

F

aRefKaclgZp þ bRefKaclg
: (73)

An interesting case arises when F þ Fa ¼ 0; i.e. when

ep ¼ La

d31

tc

V ¼ �
F

Kacl
: (74)

In this case, the total input power into the structure is zero and so is the response. In practice,
complete cancellation cannot be achieved. Eq. (74) shows that the control voltage optimising the
active forces effect is finite, and decreases as Kacl increases. This result suggests that Kacl should be
chosen as high as possible, i.e. the actuator should be bonded directly to the beam; however, this
choice would result in a low amount of material damping in the structure, and the beneficial
effects of material damping on the stability of the control as well as on the fail-safe characteristics
of the treatment would be lost; there is therefore a compromise. Eq. (74) also shows that the
optimal control voltage is in phase with �F : In cases where feedforward control is possible, this
phase relationship might be easy to implement, and will usually strongly depend on frequency. In
other cases, since at resonance the force is in phase with the velocity of the beam, the active
control is essentially a derivative feedforward control. This type of control becomes less efficient
away from the resonance, but of course control is of less importance there. An additional
beneficial effect of having material damping in the structure is therefore to increase the efficiency
of the effect of the active actions in the case of feedback control.

These results are consistent with those of Gandhi and Munski [12] who, using a finite element
formulation on a beam treated with ACL, found that the effects of increasing material damping
are dominant when proportional feedback control is used, while the control due to transmission
of active forces to the host structure is dominant when derivative feedback is used.
8. Conclusion

This paper described a simple model of beams treated with ACL, which provides insight into
the physics of ACL treatments. In this model, each mode of the base beam is modelled as an sdof
system, and the two layers of the ACL patch are modelled by two springs in series. The spring
representing the viscoelastic layer has a complex stiffness, and the spring modelling the actuator is
driven by the control voltage applied to the piezoelectric layer. Since the main assumption of the
model is that the longitudinal displacement of the beam beneath the ACL patch varies linearly
with position, the model is valid for patches whose length is short compared to the wavelength on
the beam and which are positioned at appropriate locations on the beam.

The strength of the model lies in its simplicity, since it enables analytical investigation of the
effects of the parameters of the ACL patch and of the control voltage on the efficiency of the
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different ACL damping mechanisms. Furthermore, the viscoelastic layer can be chosen arbitrarily
thin and stiff, thus enabling piezoelectric patches directly bonded to the host structure to be
modelled. Additionally, multiple patch treatments can easily be modelled by connecting several
springs to the base beam model. A numerical validation showed that, despite its simplicity, the
model accurately predicts the response of beams treated with ACL patches.

The various mechanisms of ACL control were briefly discussed for a single mode. In the passive
case, it was shown that the efficiency of the ACL patch depends on the product of a term
describing the coupling of the ACL patch with the beam at the position where the patch is centred,
and of the imaginary part of the uncoupled patch. In the active case, the control voltage increases
the material damping (i.e. the dissipation of energy in the viscoelastic layer) and/or apply active
forces to the beam through the viscoelastic layer.

Material damping augmentation occurs when the control voltage is proportional to the
displacement of the beam and as large as possible. To ensure maximum efficiency of this damping
mechanism, the passive material damping should be optimised.

Active forces effects are optimum when the control voltage is proportional to the external force
applied to the beam. At resonances, this occurs when the control voltage is proportional to the
velocity of the beam (derivative feedback). In this case, the active forces also introduce active
viscous damping in the structure. The amplitude of the control voltage cancelling the external
force has to be determined and decreases when the coupling between the ACL patch and the beam
increases. To minimise the amplitude of the control voltage, the viscoelastic layer should thus be
chosen as stiff as possible. However, this design would decrease the amount of material damping
in the structure, and thus the stability of the control. There is therefore a compromise.

The model was proved useful to understand the physics of ACL treatments, and will be used in
future work to optimise the design of these treatments, as well as to compare the conventional
ACL configuration to treatments consisting of a passive constrained layer and an actuator
separately bonded to the beam.
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